109 research outputs found

    Effects of different chemical materials and cultural methods on growth and yield of winter wheat

    Get PDF
    To determine the effects of different chemical and cultural methods on the growth of winter wheat, six treatments were carried out: Conservational irrigation, non-irrigation, water absorbent polymers (WAP), liquid mulching film (LMF), water-saving irrigation (WSI) and subsoiling tillage (SST). The results show that winter wheat could use more water from soil profile though WAP, LMF and SST treatments; only LMF could use extra water for yield while both WAP and SST could not increase yield. SST could not increase yield of winter wheat. Both LMF and WAP treatments could help in maintaining leaf chlorophyll content and leaf water content which may help in maintaining photosynthetic ability in late growing periods. Furthermore, more dry matter partitioning to reproductive organs is observed in LMF and WAP treatments. LMF might be favorable for yield when grown under lower soil moisture conditions, while the application of WAP might not help in yield producing in field both in high or low soil moisture conditions. A reasonable irrigation quantity may be needed when applying WAP, while LMF could be used in any meteorological and/or soil water conditions.Keywords: Winter wheat, water absorbent polymers, liquid mulching film, subsoiling tillageAfrican Journal of Biotechnology Vol. 12(36), pp. 5522-552

    FewRel: A Large-Scale Supervised Few-Shot Relation Classification Dataset with State-of-the-Art Evaluation

    Full text link
    We present a Few-Shot Relation Classification Dataset (FewRel), consisting of 70, 000 sentences on 100 relations derived from Wikipedia and annotated by crowdworkers. The relation of each sentence is first recognized by distant supervision methods, and then filtered by crowdworkers. We adapt the most recent state-of-the-art few-shot learning methods for relation classification and conduct a thorough evaluation of these methods. Empirical results show that even the most competitive few-shot learning models struggle on this task, especially as compared with humans. We also show that a range of different reasoning skills are needed to solve our task. These results indicate that few-shot relation classification remains an open problem and still requires further research. Our detailed analysis points multiple directions for future research. All details and resources about the dataset and baselines are released on http://zhuhao.me/fewrel.Comment: EMNLP 2018. The first four authors contribute equally. The order is determined by dice rolling. Visit our website http://zhuhao.me/fewre

    Progressive Attention Guidance for Whole Slide Vulvovaginal Candidiasis Screening

    Full text link
    Vulvovaginal candidiasis (VVC) is the most prevalent human candidal infection, estimated to afflict approximately 75% of all women at least once in their lifetime. It will lead to several symptoms including pruritus, vaginal soreness, and so on. Automatic whole slide image (WSI) classification is highly demanded, for the huge burden of disease control and prevention. However, the WSI-based computer-aided VCC screening method is still vacant due to the scarce labeled data and unique properties of candida. Candida in WSI is challenging to be captured by conventional classification models due to its distinctive elongated shape, the small proportion of their spatial distribution, and the style gap from WSIs. To make the model focus on the candida easier, we propose an attention-guided method, which can obtain a robust diagnosis classification model. Specifically, we first use a pre-trained detection model as prior instruction to initialize the classification model. Then we design a Skip Self-Attention module to refine the attention onto the fined-grained features of candida. Finally, we use a contrastive learning method to alleviate the overfitting caused by the style gap of WSIs and suppress the attention to false positive regions. Our experimental results demonstrate that our framework achieves state-of-the-art performance. Code and example data are available at https://github.com/cjdbehumble/MICCAI2023-VVC-Screening.Comment: Accepted in the main conference MICCAI 202

    READIN: A Chinese Multi-Task Benchmark with Realistic and Diverse Input Noises

    Full text link
    For many real-world applications, the user-generated inputs usually contain various noises due to speech recognition errors caused by linguistic variations1 or typographical errors (typos). Thus, it is crucial to test model performance on data with realistic input noises to ensure robustness and fairness. However, little study has been done to construct such benchmarks for Chinese, where various language-specific input noises happen in the real world. In order to fill this important gap, we construct READIN: a Chinese multi-task benchmark with REalistic And Diverse Input Noises. READIN contains four diverse tasks and requests annotators to re-enter the original test data with two commonly used Chinese input methods: Pinyin input and speech input. We designed our annotation pipeline to maximize diversity, for example by instructing the annotators to use diverse input method editors (IMEs) for keyboard noises and recruiting speakers from diverse dialectical groups for speech noises. We experiment with a series of strong pretrained language models as well as robust training methods, we find that these models often suffer significant performance drops on READIN even with robustness methods like data augmentation. As the first large-scale attempt in creating a benchmark with noises geared towards user-generated inputs, we believe that READIN serves as an important complement to existing Chinese NLP benchmarks. The source code and dataset can be obtained from https://github.com/thunlp/READIN.Comment: Preprin

    Privacy-Preserving Encrypted Low-Dose CT Denoising

    Full text link
    Deep learning (DL) has made significant advancements in tomographic imaging, particularly in low-dose computed tomography (LDCT) denoising. A recent trend involves servers training powerful models with large amounts of self-collected private data and providing application programming interfaces (APIs) for users, such as Chat-GPT. To avoid model leakage, users are required to upload their data to the server model, but this way raises public concerns about the potential risk of privacy disclosure, especially for medical data. Hence, to alleviate related concerns, in this paper, we propose to directly denoise LDCT in the encrypted domain to achieve privacy-preserving cloud services without exposing private data to the server. To this end, we employ homomorphic encryption to encrypt private LDCT data, which is then transferred to the server model trained with plaintext LDCT for further denoising. However, since traditional operations, such as convolution and linear transformation, in DL methods cannot be directly used in the encrypted domain, we transform the fundamental mathematic operations in the plaintext domain into the operations in the encrypted domain. In addition, we present two interactive frameworks for linear and nonlinear models in this paper, both of which can achieve lossless operating. In this way, the proposed methods can achieve two merits, the data privacy is well protected and the server model is free from the risk of model leakage. Moreover, we provide theoretical proof to validate the lossless property of our framework. Finally, experiments were conducted to demonstrate that the transferred contents are well protected and cannot be reconstructed. The code will be released once the paper is accepted
    • …
    corecore